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Abstract—A battery model identification approach, based on
non-uniformly sampled data, aiming to reflect the nonlinear
dynamic behavior of a lithium-ion cell is presented in this work.
To accurately predict the voltage response, the underlying model
should reproduce the fast and slow dynamics of the battery
cell. Therefore direct identification from non-uniformly sampled
measurement data based on continuous-time model identification
is applied. To take into account the nonlinear behavior of the
battery, local linear model partitioning for the state of charge
is performed. The resulting dynamic battery model is able
to accurately predict the system response. With a parameter
conversion to physically interpretable parameters, based on an
equivalent circuit model, the parameter variance among similar
cells and the temperature dependency of the model identification
are investigated as well as the parameter characteristics over
time. All results are based on non-uniformly sampled input
output measurement data of three identical lithium-ion power
cells.

Index Terms—non-uniformly sampled data, continuous-time
system identification, lithium-ion battery, aging data analysis

I. INTRODUCTION

Lithium-ion batteries are the most promising technology
in electric vehicles and serve as the steppingstone for future
environmentally friendly mobility. Due to the high power
and energy density of the lithium-ion cell [1], the battery
management system needs to monitor the cell precisely to
ensure a safe and reliable operation. Based on the mea-
surements of the terminal voltage and the charge/discharge
current, mathematical battery models are needed to compute
estimations of the state of charge (SoC) and the state of health
(SoH) of the battery cell [2].

One way of identifying battery models is by direct param-
eter estimation using an optimization algorithm [3], [4], [5],
which estimates the unknown parameters of electro-thermal,
physical and chemical models by minimizing an objective
function. One of the widest used method for control oriented
battery modeling is discrete-time system identification [6],
[7] of empirical or equivalent circuit based models. Another
approach is based on the electrochemical principles of the

battery cell [8], which are described by coupled systems of
partial differential equations. However, this is not suitable for
system identification purposes, even though it describes the
fundamental principles on which all other models are based. In
this paper, a continuous-time approach based on the nonlinear
modeling strategy of previous studies [6], [9] is applied.
Continuous-time system identification can directly be used
on non-uniformly sampled data and therefore circumvents
problems related to choosing a sampling time. Such methods
can also be applied for stiff systems and enable to accurately
estimate time delay of non-integer multiples of the sampling
time [10], [11].

In [12] an algorithm for continuous-time transfer function
identification from non-uniformly sampled data is derived.
This method enables the direct identification of continuous-
time transfer functions by introducing an algebraic reformu-
lation of the transfer function model. The continuous-time
model parameters represent a linear relationship from the
input to the output. To implement the nonlinear effects of the
open circuit voltage (OCV) local linear models for several
operating regions are computed. Based on a simple, user-
defined partitioning, a local model network (LMN), see e.g.
[6], using continuous-time local models is constructed. To
enable physical interpretation of the identified model param-
eters and interpret the changes over the local linear models
a conversion to equivalent circuit model (ECM) parameters
is performed. With the new parameter set, the characteristics
over the state of charge (SoC), the temperature dependency
and the evolution of the parameters over the aging process
can be evaluated on physical bases.

The remainder of this paper is divided into three sections.
In Section II the battery model identification based on the
non-uniformly sampled data is described in detail. In section
III the equivalent circuit model conversion is derived, which
enables the physical interpretation of the identified parameters.
In the last section, Section IV, the simulation results are shortly
discussed followed by a model parameter diversification study.
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The last part covers the evolution of the model parameter over
the aging process of the battery cell.

II. BATTERY MODEL IDENTIFICATION

In this section, the battery model identification is de-
rived. For the model identification, the inputs are the
charge/discharge current and the SoC. The output is the
terminal voltage of the cell. Based on measurement data,
which is a non-uniformly sampled input output sequence, a
method that can directly compute model parameters from the
measurements is used. A sequence of the measurement data is
shown in Fig. 1, where the voltage u and the SoC response to a
step in the current i is depicted. In Fig. 2, the relative frequency
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Fig. 1. Section of the measurement data of an input step and the corresponding
voltage and SoC response clearly showing the non-uniform inter sampling
behavior. Top: the input signal, middle: the voltage response and bottom: the
SoC.

of the sampling intervals for one test cycle is depicted. The
sampling intervals range from 0.1 ms up to 30 s and the most
frequent sampling intervals are shown in the figure.

The rest of this section covers the continuous parameter
estimation in detail, as well as the method used for the
nonlinear model estimation.

A. Continuous-time model identification

Typically, the nonlinear dynamics of the battery cell are
determined by the nonlinear effect of the SoC on the OCV.
In [6] it is shown that local linear models are able to capture
these effects in an efficient way. With the scheduling variable
SoC, the operating regions of the local linear models are deter-
mined by simple user defined partitioning. For a more general
approach the method described in [6] might be better suited.
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Fig. 2. Distribution of sampling intervals for a test cycle.

The local linear models are based on the linear differential
equation

ÿ(t) + a1ẏ(t) + a2y(t) =b0ü1(t) + b1u̇1(t) + b2u1(t)

+ cu2(t) + du3(t)
(1)

which is the continuous-time equivalent of the discrete-time
model used in [6]. The input signals are the applied current
u1, the SoC u2 and the bias term u3 which represents the
affine term of the model. The corresponding transfer operator
models are defined as follows

G1(p) =
b0p

2 + b1p+ b2
p2 + a1p+ a2

(2)

G2(p) =
c

p2 + a1p+ a2
(3)

G3(p) =
d

p2 + a1p+ a2
(4)

with the argument p as the differential operator p = d/dt.
As stated in [12] the isomorphism of the differential operator
and the transfer function is valid and therefore the argument
p corresponds to the transfer function description, i.e. the
Laplace variable s. The transfer operator G1 reflects the
current response of the model and the influence of the SoC is
given by G2 and G3. The unknown coefficients ai, bi, c and d
have to be estimated. The algorithm for continuous-time model
identification, shown in [12], for a given transfer operator

G(p) =
B(p)

A(p)
(5)

where A and B fit the desired transfer operators (2)-(4) can
be written in a general form as

G0(p) =
b0p

m + ...+ bm
pn + a1pn−1 + ...+ an

(6)

with m and n the corresponding highest derivatives. The
method replaces the differential operator with a linear filter

λ =
1

1 + τp
(7)

while keeping an exact transfer function. The filter parameter
τ represents a tuning parameter, which has to be chosen
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adequately. With that filter the following transformation can
be made

G0(p) =
B(p)

A(p)
=
B∗(λ)

A∗(λ)
= G∗

0(λ) (8)

where A∗ and B∗ depend on the filter operator λ and the new
parameters α and β in the following manner

A∗(λ) = 1 + α1λ+ α2λ
2 + · · ·+ αnλ

n (9)

B∗(λ) = β0 + β1λ+ β2λ
2 + · · ·+ βmλ

m. (10)

The transformation applied to the three transfer operators
(2)-(4) and rewritten as input-output equation in regression
form results in

y(t) =− α1[λy](t)− α2[λ2y](t)

+ β0u1(t) + β1[λu1](t) + β2[λ2u1](t)

+ γ[λ2u2](t) + δ[λ2u3](t)

(11)

where the direct influence of the input on the output is shown
with the input u1(t). The filtered input and output signals
are represented by [λu] and [λy]. This equation is a dynamic
system description valid at all points in time. Reformulation
of (11) in matrix form yields

y(t) = ϕTτ (t)θτ (12)

with the parameter vector

θτ = [α1 α2 β0 β1 β2 γ δ]T (13)

and the regressor vector

ϕτ (t) = [− [λy](t),−[λ2y](t),

u1(t), [λu1](t), [λ2u1](t),

[λ2u2](t), [λ2u3](t)]T
(14)

For each of the local linear models of the LMN, the local
parameter vector can now be estimated using weighted least
squares (WLS). Each local model is valid for a small section of
the SoC and the partitioning is chosen manually depending on
the available training data. The weighting matrix W for the
individual local models is obtained using Gaussian validity
functions defined by its associated center and spread. The
WLS estimator of the parameters (13) is given by

θτ = (ΦTτWΦτ )−1ΦTτWY (15)

with Φτ the regressor matrix and Y the output vector defined
as

Φτ =


ϕTτ (t1)
ϕTτ (t2)

...
ϕTτ (tn)

 Y =


y(t1)
y(t2)

...
y(tn)

 (16)

with t1 to tn representing the non uniformly distributed
sampling instances.

With the parameter vector (15) and the desired parameter
vector, comprising the unknown parameters from the transfer
operator (2)-(4),

θ = [a1 a2 b0 b1 b2 c d]T (17)

the parameter transformation can be derived. The foundation
of this transformation is formulated in [12] and the modified
version, which fits the given system description, is stated here.
The transformation is given by

θτ = Fτθ +Gτ (18)

where

Fτ =


Mk 0 0 0
0 Ml 0 0
0 0 Mp 0
0 0 0 Mq

 (19)

is a Ω× Ω matrix with Ω = k + l + p+ q and

k = n, l = m+ 1, p = 1 and q = 1

representing the number of unknown parameters for ai, bi, c
and d, respectively. The diagonal elements of (19) consist of
Pascal matrices

Mα =


m11 0 · · · 0

...
. . . . . .

...
...

. . . . . . 0
mα1 · · · · · · mαα

 (20)

which, depending on the position, are different in size, e.g.
Mk a k× k square matrix, with their corresponding elements

mij = (−1)i−j
(
c− j
i− j

)
τ j+∆α (21)

with ∆α the relative difference of the parameter, i.e. ∆α =
k − α, α ∈ {k, l, p, q}. The second term in (18), Gτ is a
Ω× 1 vector

Gτ = [g1 · · · gk 0Γ×1]T (22)

with Γ = l + p+ q and

gi =

(
k
i

)
(−1)i. (23)

Now the transformation from (18) can be solved for the
original parameter vector resulting in

θ = F−1
τ (θτ −Gτ ). (24)

The inverse of F can be computed if M is invertible, which
is feasible for all values of τ > 0.

III. EQUIVALENT CIRCUIT MODEL CONVERSION

To enable physical interpretation of the identified model
parameters and interpret the changes over the local linear
models, a conversion from the transfer operator (2) to an
ECM is derived in this section. For an arbitrary transfer
function the foster synthesis, described in [13], can be applied
which decomposes rational transfer functions to a series of
RLC circuits. For the 2nd order ECM used in this paper the
conversion, also shown in [14], is briefly described in this
section.

The 2nd order ECM depicted in Fig. 3 consists of two
RC elements in series and an ohmic resistor as well as a
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Fig. 3. Electric circuit of an ECM with two RC-elements.

constant voltage supply dependent on the OCV. This ECM
is chosen as it fits the previous model order specification [6]
and fortunately, as stated in [15], this is the best choice for an
ECM. The dynamic part, udyn of the ECM can be described
as

GECM (s) = R0 +
R1

1 +R1C1s
+

R2

1 +R2C2s
(25)

which enables the parameter conversion to the transfer func-
tion parameters of (2) and results in

b0 = R0

b1 = R0(
1

τ1
+

1

τ2
) +

1

C1
+

1

C2

b2 =
R0 +R1 +R2

τ1τ2

a1 =
1

τ1
+

1

τ2

a2 =
1

τ1τ2

(26)

where τ1 = R1C1 and τ2 = R2C2 are the time constants of
the dynamic system.

IV. RESULTS

Three lithium-ion battery cells, which are aged over a period
of 450 days, are used to validate the results of the continuous-
time model identification. The investigated cells are 18650
Cells with Lithium Nickel Manganese Cobalt Oxide (NMC)
as the Cathode material.

The used measurement data is divided in two parts, the
reference test cycles (RTC) and the load cycles (LC). At the
beginning of the aging test, five RTC are performed at different
temperatures, which are used for initial model characterization.
For the rest of the test alternating RTC at 25◦C and LC at
different loading conditions are performed. The conditions for
the LC cover different amounts of cumulative ampere-hour
throughput, various temperature levels, C-rates and depth of
discharge. A measurement data set of a single RTC is depicted
in Fig. 4. The applied current is shown in the first plot and
the resulting voltage signal in the second plot. In the third
plot the SoC is shown which is obtained through Coulomb
counting. The data covers a large range of the SoC, with
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Fig. 4. Measurement data of a single reference test cycle.

complete charge and discharging cycles and highly dynamic
current cycles at different SoC levels, which incorporate the
fast and slow dynamics of the system.

A. Nonlinear model parameter and simulation results

The results of the simulation of an RTC at 25◦C compared
to the measurements is shown in Fig. 5. In the second plot the
deviation between the two signals is depicted. The simulation
results are computed with the training data since no validation
data is available. However, since the identification was based
on minimizing the one-step-ahead prediction error, these sim-
ulation results indicate that good generalization capabilities of
the identified model can be expected.
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Fig. 5. Simulation result for a single reference test cycle and the correspond-
ing error.

As mentioned before, at the beginning of the aging test
five initial RTC are performed at various temperature levels
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for all three cells. This RTCs are used for initial model
characterization over a large temperature range. The internal
resistance curve, i.e. R0/R0,init, versus the SoC of the non-
linear identified models for each of the test cycles is shown
on the left in Fig. 6. Here, the values are normalized using
the initial internal resistance R0, init of Cell 1 at 25◦C. By
computing the mean value of each of this normalized curves
the resulting values show the temperature dependency of the
parameter R̄0, which are depicted on the right in Fig. 6. Each
line on the left is projected to a single value on the right,
to visualize the decrease of the internal resistance R̄0 with
increasing temperature.

0 50 100

SoC (%)

0

1

2

3

R
0
/
R

0,
in
it

0 20 40 60

Temperature (◦C)

0

1

2

3

R̄
0

Fig. 6. Nonlinear values of the internal resistance R0 versus the SoC for
different temperature levels (left) and the mean value for each line versus
corresponding temperatures (right).

B. Parameter distribution among new battery cells

To investigate the parameter characteristic among similar
cells at the beginning of the life-cycle three similar cells are
evaluated. All values depicted in this section are mean values
of the nonlinear parameter characteristic over the SoC. Please
note that all parameter values in Section IV-B and IV-C were
normalized using the corresponding value of Cell 1 at 25◦C.
Each point is the result of a model identification from a RTC
at various temperature levels. In Fig. 7 the mean normalized
internal resistance R̄0 is depicted over the temperature for
all three cells. As before the value decreases with increasing
temperatures and for lower temperatures a slight variation in
the parameters is visible. This effect is shown throughout the
results and might be an indicator that the model identification
is not as accurate for lower temperatures.

In Fig. 8 the parameters of the first RC-element, the slow
time constant, is depicted. As observed in the internal resis-
tance R̄0, a decrease of the resistance value R̄1 with increasing
temperature is visible. The opposite effect is present in the
temperature characteristics of the capacitance C̄1.

For the second RC-element, the same effect as for the other
resistance values is visible where the resistance R̄2 decreases
with increasing temperature. However, the parameter estima-
tion for 5◦C is significantly different from the other values and
shows large deviations among the cells. The capacitance C̄2 on
the other hand shows no deviation for the lowest temperature
and an overall increase over the whole temperature range
simular to R̄1.
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Fig. 7. Comparison of the internal resistance among similar unaged cells for
different temperature levels.
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Fig. 8. Comparison of the first RC-element parameters among similar unaged
cells for different temperature levels.
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Fig. 9. Comparison of the second RC-element parameters among similar
unaged cells for different temperature levels.
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The results correspond with the findings in [16], which are
based on experimental investigations of the temperature and
aging effects of lithium-ion batteries at various conditions.

C. Parameter characteristics over the aging process

Additionally to the temperature dependent initial test cycles,
extensive aging investigations have been performed for this
cells. As mentioned before, the cells are aged under different
conditions and normalized to the corresponding initial param-
eter value of Cell 1 at 25◦C. Over the whole aging process,
intermediate RTC at 25◦C are performed. These intermediate
tests, at the same temperature, are used for model investigation
over the aging process and evaluation of the characteristic
developments of the ECM parameters. As the capacity of the
cell is one of the characteristic properties, the evolution of
Cact/Cnom over the aging process is shown in Fig. 10. Here,
Cnom refers to the the nominal capacity and the resulting
normalized values show an almost constant decrease over the
lifetime of the cell. The deviations among the cells are caused
by the different test conditions at which the load cycles are
performed.
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Fig. 10. Capacity decay of three cells at different stages of the aging process.
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Fig. 11. Internal resistance progression of three cells at different stages of
the aging process.

The evolution of the internal resistance for the intermediate
RTC is shown in Fig. 11. The initial change in the parameters
shows a decrease which is similar for all cells. From there on
the characteristics deviate depending on the LC. The internal

resistance R̄0 of Cell 1 continues to decrease up to 250 days
and stays constant for the rest of the test period. The internal
resistance of Cell 2 and 3 increase over the rest of the aging
tests whereas the increase of Cell 2 is significantly larger.
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Fig. 12. Parameters of the first RC-element at different stages of the aging
process.

For the parameters of the first RC-element, see Fig. 12, the
deviations are not as significant as for the internal resistance.
The resistance R̄1 of Cell 2 increases slightly and the capac-
itance C̄1 of both Cell 2 and Cell 3 decreases. For the rest of
the cell parameters no significant changes are visible.
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Fig. 13. Parameters of the second RC-element at different stages of the aging
process.

For the second RC-element, shown in Fig. 13, the changes
are similar to the result of the first RC-element.

Overall, the results show that all parameters change over
time, but are highly dependent on the load history as shown
in the capacity and internal resistance plot. The time constants
on the other hand change rather slowly, as only for the most
degraded cell marginal changes are visible.

V. CONCLUSION

The method described in this paper shows the accuracy and
advantage of direct continuous-time model identification based
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on non-uniformly sampled lithium-ion battery measurement
data. The identified model is able to accurately predict the
system response and with the ECM a physical interpretation
of the parameters is possible. The effects of the parameters on
the temperature and their characteristics over the aging of the
cell are available without any data manipulation and solely
based on direct identification. The results show the need of
accurate estimation of the capacity and the internal resistance
of the cell, as they are highly dependent on the load history.
The changes of the other parameters are not as significant
but will affect the model accuracy if not take into account.
The future work goals are first of all the implementation of
a SoC observer, to directly enable the use of measurement
data without prior SoC calculation and the implementation of
a SoH observer to adjust model parameters dependent on the
changes in the capacity and the internal resistance.
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